Papers
Topics
Authors
Recent
Search
2000 character limit reached

Practical Aspect of Privacy-Preserving Data Publishing in Process Mining

Published 24 Sep 2020 in cs.CR | (2009.11542v1)

Abstract: Process mining techniques such as process discovery and conformance checking provide insights into actual processes by analyzing event data that are widely available in information systems. These data are very valuable, but often contain sensitive information, and process analysts need to balance confidentiality and utility. Privacy issues in process mining are recently receiving more attention from researchers which should be complemented by a tool to integrate the solutions and make them available in the real world. In this paper, we introduce a Python-based infrastructure implementing state-of-the-art privacy preservation techniques in process mining. The infrastructure provides a hierarchy of usages from single techniques to the collection of techniques, integrated as web-based tools. Our infrastructure manages both standard and non-standard event data resulting from privacy preservation techniques. It also stores explicit privacy metadata to track the modifications applied to protect sensitive data.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.