Papers
Topics
Authors
Recent
2000 character limit reached

Geodesic flows modeled by expansive flows: Compact surfaces without conjugate points and continuous Green bundles (2009.11365v1)

Published 23 Sep 2020 in math.DS

Abstract: We study the geodesic flow of a compact surface without conjugate points and genus greater than one and continuous Green bundles. Identifying each strip of bi-asymptotic geodesics induces an equivalence relation on the unit tangent bundle. Its quotient space is shown to carry the structure of a 3-dimensional compact manifold. This manifold carries a canonically defined continuous flow which is expansive, time-preserving semi-conjugate to the geodesic flow, and has a local product structure. An essential step towards the proof of these properties is to study regularity properties of the horospherical foliations and to show that they are indeed tangent to the Green subbundles. As an application it is shown that the geodesic flow has a unique measure of maximal entropy.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.