Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Worst-Case-Aware Curriculum Learning for Zero and Few Shot Transfer (2009.11138v1)

Published 23 Sep 2020 in cs.CL and cs.LG

Abstract: Multi-task transfer learning based on pre-trained language encoders achieves state-of-the-art performance across a range of tasks. Standard approaches implicitly assume the tasks, for which we have training data, are equally representative of the tasks we are interested in, an assumption which is often hard to justify. This paper presents a more agnostic approach to multi-task transfer learning, which uses automated curriculum learning to minimize a new family of worst-case-aware losses across tasks. Not only do these losses lead to better performance on outlier tasks; they also lead to better performance in zero-shot and few-shot transfer settings.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube