Papers
Topics
Authors
Recent
Search
2000 character limit reached

A data-driven method for computing polyhedral invariant sets of black-box switched linear systems

Published 23 Sep 2020 in eess.SY and cs.SY | (2009.10984v2)

Abstract: In this paper, we consider the problem of invariant set computation for black-box switched linear systems using merely a finite set of observations of system trajectories. In particular, this paper focuses on polyhedral invariant sets. We propose a data-driven method based on the one step forward reachable set. For formal verification of the proposed method, we introduce the concepts of $\lambda$-contractive sets and almost-invariant sets for switched linear systems. The convexity-preserving property of switched linear systems allows us to conduct contraction analysis on the computed set and derive a probabilistic contraction property. In the spirit of non-convex scenario optimization, we also establish a chance-constrained guarantee on set invariance. The performance of our method is then illustrated by numerical examples.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.