Papers
Topics
Authors
Recent
2000 character limit reached

When the Allee threshold is an evolutionary trait: persistence vs. extinction

Published 21 Sep 2020 in math.AP | (2009.09657v2)

Abstract: We consider a nonlocal parabolic equation describing the dynamics of a population structured by a spatial position and a phenotypic trait, submitted to dispersion , mutations and growth. The growth term may be of the Fisher-KPP type but may also be subject to an Allee effect which can be weak (non-KPP monostable nonlinearity, possibly degenerate) or strong (bistable nonlinearity). The type of growth depends on the value of a variable $\theta$ : the Allee threshold, which is considered here as an evolutionary trait. After proving the well-posedness of the Cauchy problem, we study the long time behavior of the solutions. Due to the richness of the model and the interplay between the various phenomena and the nonlocality of the growth term, the outcomes (extinction vs. persistence) are various and in sharp contrast with earlier results of the existing literature on local reaction-diffusion equations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.