Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Confidence intervals for parameters in high-dimensional sparse vector autoregression (2009.09462v1)

Published 20 Sep 2020 in stat.ME

Abstract: Vector autoregression (VAR) models are widely used to analyze the interrelationship between multiple variables over time. Estimation and inference for the transition matrices of VAR models are crucial for practitioners to make decisions in fields such as economics and finance. However, when the number of variables is larger than the sample size, it remains a challenge to perform statistical inference of the model parameters. In this article, we propose the de-biased Lasso and two bootstrap de-biased Lasso methods to construct confidence intervals for the elements of the transition matrices of high-dimensional VAR models. We show that the proposed methods are asymptotically valid under appropriate sparsity and other regularity conditions. To implement our methods, we develop feasible and parallelizable algorithms, which save a large amount of computation required by the nodewise Lasso and bootstrap. A simulation study illustrates that our methods perform well in finite samples. Finally, we apply our methods to analyze the price data of stocks in the S&P 500 index in 2019. We find that some stocks, such as the largest producer of gold in the world, Newmont Corporation, have significant predictive power over the most stocks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.