Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Auxiliary Function-based Independent Vector Analysis (2009.09402v1)

Published 20 Sep 2020 in eess.AS

Abstract: Independent Vector Analysis (IVA) is an effective approach for Blind Source Separation (BSS) of convolutive mixtures of audio signals. As a practical realization of an IVA-based BSS algorithm, the so-called AuxIVA update rules based on the Majorize-Minimize (MM) principle have been proposed which allow for fast and computationally efficient optimization of the IVA cost function. For many real-time applications, however, update rules for IVA exhibiting even faster convergence are highly desirable. To this end, we investigate techniques which accelerate the convergence of the AuxIVA update rules without extra computational cost. The efficacy of the proposed methods is verified in experiments representing real-world acoustic scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Andreas Brendel (23 papers)
  2. Walter Kellermann (48 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.