Papers
Topics
Authors
Recent
2000 character limit reached

Singular equivalences induced by bimodules and quadratic monomial algebras

Published 20 Sep 2020 in math.RT and math.RA | (2009.09356v1)

Abstract: We investigate the problem when the tensor functor by a bimodule yields a singular equivalence. It turns out that this problem is equivalent to the one when the Hom functor given by the same bimodule induces a triangle equivalence between the homotopy categories of acyclic complexes of injective modules. We give conditions on when a bimodule appears in a pair of bimodules, that defines a singular equivalence with level. We construct an explicit bimodule, which yields a singular equivalence between a quadratic monomial algebra and its associated algebra with radical square zero. Under certain conditions which include the Gorenstein cases, the bimodule does appear in a pair of bimodules defining a singular equivalence with level.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.