Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-Activation Hidden Units for Neural Networks with Random Weights (2009.08932v2)

Published 6 Sep 2020 in cs.NE and cs.LG

Abstract: Single layer feedforward networks with random weights are successful in a variety of classification and regression problems. These networks are known for their non-iterative and fast training algorithms. A major drawback of these networks is that they require a large number of hidden units. In this paper, we propose the use of multi-activation hidden units. Such units increase the number of tunable parameters and enable formation of complex decision surfaces, without increasing the number of hidden units. We experimentally show that multi-activation hidden units can be used either to improve the classification accuracy, or to reduce computations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.