Papers
Topics
Authors
Recent
2000 character limit reached

A Study of Genetic Algorithms for Hyperparameter Optimization of Neural Networks in Machine Translation

Published 15 Sep 2020 in cs.NE and cs.CL | (2009.08928v1)

Abstract: With neural networks having demonstrated their versatility and benefits, the need for their optimal performance is as prevalent as ever. A defining characteristic, hyperparameters, can greatly affect its performance. Thus engineers go through a process, tuning, to identify and implement optimal hyperparameters. That being said, excess amounts of manual effort are required for tuning network architectures, training configurations, and preprocessing settings such as Byte Pair Encoding (BPE). In this study, we propose an automatic tuning method modeled after Darwin's Survival of the Fittest Theory via a Genetic Algorithm (GA). Research results show that the proposed method, a GA, outperforms a random selection of hyperparameters.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.