Reducing the computational effort of min-max model predictive control with regional feedback laws (2009.08213v2)
Abstract: Recently, a regional MPC approach has been proposed that exploits the piecewise affine structure of the optimal solution (without computing the entire explicit solution before). Here, regional refers to the idea of using the affine feedback law that is optimal in a vicinity of the current state of operation, and therefore provides the optimal input signal without requiring to solve a QP. In the present paper, we apply the idea of regional MPC to min-max MPC problems. We show that the new robust approach can significantly reduce the number of QPs to be solved within min-max MPC resulting in a reduced overall computational effort. Moreover, we compare the performance of the new approach to an existing robust regional MPC approach using a numerical example with varying horizon. Finally, we provide a rule for choosing a suitable robust regional MPC approach based on the horizon.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.