Papers
Topics
Authors
Recent
2000 character limit reached

Classical dynamical density functional theory: from fundamentals to applications (2009.07977v1)

Published 16 Sep 2020 in cond-mat.soft, cond-mat.mtrl-sci, cond-mat.stat-mech, nlin.PS, and physics.flu-dyn

Abstract: Classical dynamical density functional theory (DDFT) is one of the cornerstones of modern statistical mechanics. It is an extension of the highly successful method of classical density functional theory (DFT) to nonequilibrium systems. Originally developed for the treatment of simple and complex fluids, DDFT is now applied in fields as diverse as hydrodynamics, materials science, chemistry, biology, and plasma physics. In this review, we give a broad overview over classical DDFT. We explain its theoretical foundations and the ways in which it can be derived. The relations between the different forms of deterministic and stochastic DDFT as well as between DDFT and related theories, such as quantum-mechanical time-dependent DFT, mode coupling theory, and phase field crystal models, are clarified. Moreover, we discuss the wide spectrum of extensions of DDFT, which covers methods with additional order parameters (like extended DDFT), exact approaches (like power functional theory), and systems with more complex dynamics (like active matter). Finally, the large variety of applications, ranging from fluid mechanics and polymer physics to solidification, pattern formation, biophysics, and electrochemistry, is presented.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.