Largest small polygons: A sequential convex optimization approach
Abstract: A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m\ge 7$. Finding the largest small $n$-gon for a given number $n\ge 3$ can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a sequential convex optimization approach, which is an ascent algorithm guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons with up to $n=128$ sides suggest that the optimal solutions obtained are near-global. Indeed, for even $6 \le n \le 12$, the algorithm proposed in this work converges to known global optimal solutions found in the literature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.