2000 character limit reached
Path Properties of a Generalized Fractional Brownian Motion (2009.07788v2)
Published 16 Sep 2020 in math.PR
Abstract: The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power law shape function and non-stationary noises with a power-law variance function. In this paper we study sample path properties of the generalized fractional Brownian motion, including Holder continuity, path differentiability/non-differentiability, and functional and local Law of the Iterated Logarithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.