2000 character limit reached
A strongly aperiodic shift of finite type on the discrete Heisenberg group using Robinson tilings (2009.07751v2)
Published 16 Sep 2020 in math.DS
Abstract: We explicitly construct a strongly aperiodic subshift of finite type for the discrete Heisenberg group. Our example builds on the classical aperiodic tilings of the plane due to Raphael Robinson. Extending those tilings to the Heisenberg group by exploiting the group's structure and posing additional local rules to prune out remaining periodic behavior we maintain a rich projective subdynamics on $\mathbb Z2$ cosets. In addition the obtained subshift factors onto a strongly aperiodic, minimal sofic shift via a map that is invertible on a dense set of configurations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.