Papers
Topics
Authors
Recent
2000 character limit reached

Cuspidal ribbon tableaux in affine type A (2009.07344v1)

Published 15 Sep 2020 in math.CO and math.RT

Abstract: For any convex preorder on the set of positive roots of affine type A, we classify and construct all associated cuspidal and semicuspidal skew shapes. These combinatorial objects correspond to cuspidal and semicuspidal skew Specht modules for the Khovanov-Lauda-Rouquier algebra of affine type A. Cuspidal skew shapes are ribbons, and we show that every skew shape has a unique ordered tiling by cuspidal ribbons. This tiling data provides an upper bound, in the bilexicographic order on Kostant partitions, for labels of simple factors of Specht modules.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.