Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Scott adjunction (2009.07320v1)

Published 15 Sep 2020 in math.CT, math.GN, and math.LO

Abstract: We introduce and study the Scott adjunction, relating accessible categories with directed colimits to topoi. Our focus is twofold, we study both its applications to formal model theory and its geometric interpretation. From the geometric point of view, we introduce the categorified Isbell duality, relating bounded (possibly large) ionads to topoi. The categorified Isbell duality interacts with the Scott adjunction offering a categorification of the Scott topology over a poset (hence the name). We show that the categorified Isbell duality is idempotent, similarly to its uncategorified version. From the logical point of view, we use this machinery to provide candidate (geometric) axiomatizations of accessible categories with directed colimits. We discuss the connection between these adjunctions and the theory of classifying topoi. We relate our framework to the more classical theory of abstract elementary classes. From a more categorical perspective, we show that the 2-category of topoi is enriched over accessible categories with directed colimits and we relate this result to the Scott adjunction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.