Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spectral extended finite element method for band structure calculations in phononic crystals (2009.06913v2)

Published 15 Sep 2020 in physics.comp-ph

Abstract: In this paper, we compute the band structure of one- and two-dimensional phononic composites using the extended finite element method (X-FEM) on structured higher-order (spectral) finite element meshes. On using partition-of-unity enrichment in finite element analysis, the X-FEM permits use of structured finite element meshes that do not conform to the geometry of holes and inclusions. This eliminates the need for remeshing in phononic shape optimization and topology optimization studies. In two dimensions, we adopt rational B{\'e}zier representation of curved (circular) geometries, and construct suitable material enrichment functions to model two-phase composites. A Bloch-formulation of the elastodynamic phononic eigenproblem is adopted. Efficient computation of weak form integrals with polynomial integrands is realized via the homogeneous numerical integration scheme -- a method that uses Euler's homogeneous function theorem and Stokes's theorem to reduce integration to the boundary of the domain. Ghost penalty stabilization is used on finite elements that are cut by a hole. Band structure calculations on perforated (circular holes, elliptical holes, and holes defined as a level set) materials as well as on two-phase phononic crystals are presented that affirm the sound accuracy and optimal convergence of the method on structured, higher-order spectral finite element meshes. Several numerical examples demonstrate the advantages of $p$-refinement made possible by the spectral extended finite element method. In these examples, fourth-order spectral extended finite elements deliver $\mathcal{O}(10{-8})$ accuracy in frequency calculations with more than thirty-fold fewer degrees-of-freedom when compared to quadratic finite elements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.