Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Generating Functions for Some Families of the Generalized Al-Salam-Carlitz $q$-Polynomials (2009.06563v1)

Published 14 Sep 2020 in math.CA, math-ph, and math.MP

Abstract: In this paper, by making use of the familiar $q$-difference operators $D_q$ and $D_{q{-1}}$, we first introduce two homogeneous $q$-difference operators $\mathbb{T}({\bf a},{\bf b},cD_q)$ and $\mathbb{E}({\bf a},{\bf b}, cD_{q{-1}})$, which turn out to be suitable for dealing with the families of the generalized Al-Salam-Carlitz $q$-polynomials $\phi_n{({\bf a},{\bf b})}(x,y|q)$ and $\psi_n{({\bf a},{\bf b})}(x,y|q)$. We then apply each of these two homogeneous $q$-difference operators in order to derive generating functions, Rogers type formulas, the extended Rogers type formulas and the Srivastava-Agarwal type linear as well as bilinear generating functions involving each of these families of the generalized Al-Salam-Carlitz $q$-polynomials. We also show how the various results presented here are related to those in many earlier works on the topics which we study in this paper.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube