Papers
Topics
Authors
Recent
2000 character limit reached

EfficientSeg: An Efficient Semantic Segmentation Network (2009.06469v2)

Published 14 Sep 2020 in cs.CV

Abstract: Deep neural network training without pre-trained weights and few data is shown to need more training iterations. It is also known that, deeper models are more successful than their shallow counterparts for semantic segmentation task. Thus, we introduce EfficientSeg architecture, a modified and scalable version of U-Net, which can be efficiently trained despite its depth. We evaluated EfficientSeg architecture on Minicity dataset and outperformed U-Net baseline score (40% mIoU) using the same parameter count (51.5% mIoU). Our most successful model obtained 58.1% mIoU score and got the fourth place in semantic segmentation track of ECCV 2020 VIPriors challenge.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.