Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Argumentation-based Approach for Explaining Goal Selection in Intelligent Agents (2009.06131v1)

Published 14 Sep 2020 in cs.AI

Abstract: During the first step of practical reasoning, i.e. deliberation or goals selection, an intelligent agent generates a set of pursuable goals and then selects which of them he commits to achieve. Explainable Artificial Intelligence (XAI) systems, including intelligent agents, must be able to explain their internal decisions. In the context of goals selection, agents should be able to explain the reasoning path that leads them to select (or not) a certain goal. In this article, we use an argumentation-based approach for generating explanations about that reasoning path. Besides, we aim to enrich the explanations with information about emerging conflicts during the selection process and how such conflicts were resolved. We propose two types of explanations: the partial one and the complete one and a set of explanatory schemes to generate pseudo-natural explanations. Finally, we apply our proposal to the cleaner world scenario.

Citations (6)

Summary

We haven't generated a summary for this paper yet.