Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Extended Radial Basis Function Controller for Reinforcement Learning (2009.05866v2)

Published 12 Sep 2020 in cs.LG and stat.ML

Abstract: There have been attempts in reinforcement learning to exploit a priori knowledge about the structure of the system. This paper proposes a hybrid reinforcement learning controller which dynamically interpolates a model-based linear controller and an arbitrary differentiable policy. The linear controller is designed based on local linearised model knowledge, and stabilises the system in a neighbourhood about an operating point. The coefficients of interpolation between the two controllers are determined by a scaled distance function measuring the distance between the current state and the operating point. The overall hybrid controller is proven to maintain the stability guarantee around the neighborhood of the operating point and still possess the universal function approximation property of the arbitrary non-linear policy. Learning has been done on both model-based (PILCO) and model-free (DDPG) frameworks. Simulation experiments performed in OpenAI gym demonstrate stability and robustness of the proposed hybrid controller. This paper thus introduces a principled method allowing for the direct importing of control methodology into reinforcement learning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.