Papers
Topics
Authors
Recent
Search
2000 character limit reached

A deep-learning model for evaluating and predicting the impact of lockdown policies on COVID-19 cases

Published 11 Sep 2020 in cs.SI and physics.soc-ph | (2009.05481v1)

Abstract: To reduce the impact of COVID-19 pandemic most countries have implemented several counter-measures to control the virus spread including school and border closing, shutting down public transport and workplace and restrictions on gathering. In this research work, we propose a deep-learning prediction model for evaluating and predicting the impact of various lockdown policies on daily COVID-19 cases. This is achieved by first clustering countries having similar lockdown policies, then training a prediction model based on the daily cases of the countries in each cluster along with the data describing their lockdown policies. Once the model is trained, it can used to evaluate several scenarios associated to lockdown policies and investigate their impact on the predicted COVID cases. Our evaluation experiments, conducted on Qatar as a use case, shows that the proposed approach achieved competitive prediction accuracy. Additionally, our findings highlighted that lifting restrictions particularly on schools and border opening would result in significant increase in the number of cases during the study period.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.