Papers
Topics
Authors
Recent
2000 character limit reached

Sparsifying Transformer Models with Trainable Representation Pooling (2009.05169v4)

Published 10 Sep 2020 in cs.CL and cs.LG

Abstract: We propose a novel method to sparsify attention in the Transformer model by learning to select the most-informative token representations during the training process, thus focusing on the task-specific parts of an input. A reduction of quadratic time and memory complexity to sublinear was achieved due to a robust trainable top-$k$ operator. Our experiments on a challenging long document summarization task show that even our simple baseline performs comparably to the current SOTA, and with trainable pooling, we can retain its top quality, while being $1.8\times$ faster during training, $4.5\times$ faster during inference, and up to $13\times$ more computationally efficient in the decoder.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.