Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Active Learning++: Incorporating Annotator's Rationale using Local Model Explanation (2009.04568v1)

Published 6 Sep 2020 in cs.LG, cs.AI, and cs.HC

Abstract: We propose a new active learning (AL) framework, Active Learning++, which can utilize an annotator's labels as well as its rationale. Annotators can provide their rationale for choosing a label by ranking input features based on their importance for a given query. To incorporate this additional input, we modified the disagreement measure for a bagging-based Query by Committee (QBC) sampling strategy. Instead of weighing all committee models equally to select the next instance, we assign higher weight to the committee model with higher agreement with the annotator's ranking. Specifically, we generated a feature importance-based local explanation for each committee model. The similarity score between feature rankings provided by the annotator and the local model explanation is used to assign a weight to each corresponding committee model. This approach is applicable to any kind of ML model using model-agnostic techniques to generate local explanation such as LIME. With a simulation study, we show that our framework significantly outperforms a QBC based vanilla AL framework.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.