Fractional convexity (2009.04141v2)
Abstract: We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the $1-$dimensional fractional Laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge-Ampere equation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.