Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Resolving singularities and monodromy reduction of Fuchsian connections (2009.02871v2)

Published 7 Sep 2020 in math.CA

Abstract: We study monodromy reduction of Fuchsian connections from a sheave theoretic viewpoint, focusing on the case when a singularity of a special connection with four singularities has been resolved. The main tool of study is {based on} a bundle modification technique due to Drinfeld and Oblezin. This approach via invariant spaces and eigenvalue problems allows us not only to explain Erd\'elyi's classical infinite hypergeometric expansions of solutions to Heun equations, but also to obtain new expansions not found in his papers. As a consequence, a geometric proof of Takemura's eigenvalues inclusion theorem is obtained. Finally, we observe a precise matching between the monodromy reduction criteria giving those special solutions of Heun equations and that giving classical solutions of the Painlev\'e VI equation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.