Stopping spikes, continuation bays and other features of optimal stopping with finite-time horizon (2009.01276v4)
Abstract: We consider optimal stopping problems with finite-time horizon and state-dependent discounting. The underlying process is a one-dimensional linear diffusion and the gain function is time-homogeneous and difference of two convex functions. Under mild technical assumptions with local nature we prove fine regularity properties of the optimal stopping boundary including its continuity and strict monotonicity. The latter was never proven with probabilistic arguments. We also show that atoms in the signed measure associated with the second order spatial derivative of the gain function induce geometric properties of the continuation/stopping set that cannot be observed with smoother gain functions (we call them \emph{continuation bays} and \emph{stopping spikes}). The value function is continuously differentiable in time without any requirement on the smoothness of the gain function.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.