Papers
Topics
Authors
Recent
2000 character limit reached

Stopping spikes, continuation bays and other features of optimal stopping with finite-time horizon

Published 2 Sep 2020 in math.PR, math.OC, and q-fin.MF | (2009.01276v4)

Abstract: We consider optimal stopping problems with finite-time horizon and state-dependent discounting. The underlying process is a one-dimensional linear diffusion and the gain function is time-homogeneous and difference of two convex functions. Under mild technical assumptions with local nature we prove fine regularity properties of the optimal stopping boundary including its continuity and strict monotonicity. The latter was never proven with probabilistic arguments. We also show that atoms in the signed measure associated with the second order spatial derivative of the gain function induce geometric properties of the continuation/stopping set that cannot be observed with smoother gain functions (we call them \emph{continuation bays} and \emph{stopping spikes}). The value function is continuously differentiable in time without any requirement on the smoothness of the gain function.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.