Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GAIT: Gradient Adjusted Unsupervised Image-to-Image Translation (2009.00878v1)

Published 2 Sep 2020 in cs.CV and eess.IV

Abstract: Image-to-image translation (IIT) has made much progress recently with the development of adversarial learning. In most of the recent work, an adversarial loss is utilized to match the distributions of the translated and target image sets. However, this may create artifacts if two domains have different marginal distributions, for example, in uniform areas. In this work, we propose an unsupervised IIT method that preserves the uniform regions after the translation. The gradient adjustment loss, which is the L2 norm between the Sobel response of the target image and the adjusted Sobel response of the source images, is utilized. The proposed method is validated on the jellyfish-to-Haeckel dataset, which is prepared to demonstrate the mentioned problem, which contains images with different background distributions. We demonstrate that our method obtained a performance gain compared to the baseline method qualitatively and quantitatively, showing the effectiveness of the proposed method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.