2000 character limit reached
Hyperbolic Groups and Non-Compact Real Algebraic Curves (2009.00082v1)
Published 31 Aug 2020 in math.AG and math.DG
Abstract: In this paper we study the spaces of non-compact real algebraic curves, i.e. pairs $(P,\tau)$, where $P$ is a compact Riemann surface with a finite number of holes and punctures and $\tau:P\to P$ is an anti-holomorphic involution. We describe the uniformisation of non-compact real algebraic curves by Fuchsian groups. We construct the spaces of non-compact real algebraic curves and describe their connected components. We prove that any connected component is homeomorphic to a quotient of a finite-dimensional real vector space by a discrete group and determine the dimensions of these vector spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.