Papers
Topics
Authors
Recent
2000 character limit reached

Accelerated WGAN update strategy with loss change rate balancing

Published 28 Aug 2020 in cs.CV, cs.LG, and eess.IV | (2008.12463v2)

Abstract: Optimizing the discriminator in Generative Adversarial Networks (GANs) to completion in the inner training loop is computationally prohibitive, and on finite datasets would result in overfitting. To address this, a common update strategy is to alternate between k optimization steps for the discriminator D and one optimization step for the generator G. This strategy is repeated in various GAN algorithms where k is selected empirically. In this paper, we show that this update strategy is not optimal in terms of accuracy and convergence speed, and propose a new update strategy for Wasserstein GANs (WGAN) and other GANs using the WGAN loss(e.g. WGAN-GP, Deblur GAN, and Super-resolution GAN). The proposed update strategy is based on a loss change ratio comparison of G and D. We demonstrate that the proposed strategy improves both convergence speed and accuracy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.