Papers
Topics
Authors
Recent
2000 character limit reached

Distributed-memory $\mathcal{H}$-matrix Algebra I: Data Distribution and Matrix-vector Multiplication

Published 28 Aug 2020 in math.NA, cs.DC, and cs.NA | (2008.12441v2)

Abstract: We introduce a data distribution scheme for $\mathcal{H}$-matrices and a distributed-memory algorithm for $\mathcal{H}$-matrix-vector multiplication. Our data distribution scheme avoids an expensive $\Omega(P2)$ scheduling procedure used in previous work, where $P$ is the number of processes, while data balancing is well-preserved. Based on the data distribution, our distributed-memory algorithm evenly distributes all computations among $P$ processes and adopts a novel tree-communication algorithm to reduce the latency cost. The overall complexity of our algorithm is $O\Big(\frac{N \log N}{P} + \alpha \log P + \beta \log2 P \Big)$ for $\mathcal{H}$-matrices under weak admissibility condition, where $N$ is the matrix size, $\alpha$ denotes the latency, and $\beta$ denotes the inverse bandwidth. Numerically, our algorithm is applied to address both two- and three-dimensional problems of various sizes among various numbers of processes. On thousands of processes, good parallel efficiency is still observed.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.