Papers
Topics
Authors
Recent
2000 character limit reached

Visual Question Answering on Image Sets (2008.11976v1)

Published 27 Aug 2020 in cs.CV

Abstract: We introduce the task of Image-Set Visual Question Answering (ISVQA), which generalizes the commonly studied single-image VQA problem to multi-image settings. Taking a natural language question and a set of images as input, it aims to answer the question based on the content of the images. The questions can be about objects and relationships in one or more images or about the entire scene depicted by the image set. To enable research in this new topic, we introduce two ISVQA datasets - indoor and outdoor scenes. They simulate the real-world scenarios of indoor image collections and multiple car-mounted cameras, respectively. The indoor-scene dataset contains 91,479 human annotated questions for 48,138 image sets, and the outdoor-scene dataset has 49,617 questions for 12,746 image sets. We analyze the properties of the two datasets, including question-and-answer distributions, types of questions, biases in dataset, and question-image dependencies. We also build new baseline models to investigate new research challenges in ISVQA.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.