Papers
Topics
Authors
Recent
2000 character limit reached

Many-particle limit for a system of interaction equations driven by Newtonian potentials

Published 25 Aug 2020 in math.AP and math.FA | (2008.11106v1)

Abstract: We consider a discrete particle system of two species coupled through nonlocal interactions driven by the one-dimensional Newtonian potential, with repulsive self-interaction and attractive cross-interaction. After providing a suitable existence theory in a finite-dimensional framework, we explore the behaviour of the particle system in case of collisions and analyse the behaviour of the solutions with initial data featuring particle clusters. Subsequently, we prove that the empirical measure associated to the particle system converges to the unique 2-Wasserstein gradient flow solution of a system of two partial differential equations (PDEs) with nonlocal interaction terms in a proper measure sense. The latter result uses uniform estimates of the $Lm$-norms of a piecewise constant reconstruction of the density using the particle trajectories.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.