Papers
Topics
Authors
Recent
2000 character limit reached

Machine Semiotics

Published 24 Aug 2020 in cs.CL and cs.AI | (2008.10522v2)

Abstract: Recognizing a basic difference between the semiotics of humans and machines presents a possibility to overcome the shortcomings of current speech assistive devices. For the machine, the meaning of a (human) utterance is defined by its own scope of actions. Machines, thus, do not need to understand the conventional meaning of an utterance. Rather, they draw conversational implicatures in the sense of (neo-)Gricean pragmatics. For speech assistive devices, the learning of machine-specific meanings of human utterances, i.e. the fossilization of conversational implicatures into conventionalized ones by trial and error through lexicalization appears to be sufficient. Using the quite trivial example of a cognitive heating device, we show that - based on dynamic semantics - this process can be formalized as the reinforcement learning of utterance-meaning pairs (UMP).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.