Papers
Topics
Authors
Recent
2000 character limit reached

Prediction of ICD Codes with Clinical BERT Embeddings and Text Augmentation with Label Balancing using MIMIC-III (2008.10492v1)

Published 24 Aug 2020 in cs.CL and cs.AI

Abstract: This paper achieves state of the art results for the ICD code prediction task using the MIMIC-III dataset. This was achieved through the use of Clinical BERT (Alsentzer et al., 2019). embeddings and text augmentation and label balancing to improve F1 scores for both ICD Chapter as well as ICD disease codes. We attribute the improved performance mainly to the use of novel text augmentation to shuffle the order of sentences during training. In comparison to the Top-32 ICD code prediction (Keyang Xu, et. al.) with an F1 score of 0.76, we achieve a final F1 score of 0.75 but on a total of the top 50 ICD codes.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube