Ballroom Dance Movement Recognition Using a Smart Watch (2008.10122v2)
Abstract: Inertial Measurement Unit (IMU) sensors are being increasingly used to detect human gestures and movements. Using a single IMU sensor, whole body movement recognition remains a hard problem because movements may not be adequately captured by the sensor. In this paper, we present a whole body movement detection study using a single smart watch in the context of ballroom dancing. Deep learning representations are used to classify well-defined sequences of movements, called \emph{figures}. Those representations are found to outperform ensembles of random forests and hidden Markov models. The classification accuracy of 85.95\% was improved to 92.31\% by modeling a dance as a first-order Markov chain of figures and correcting estimates of the immediately preceding figure.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.