Papers
Topics
Authors
Recent
2000 character limit reached

Fast ORB-SLAM without Keypoint Descriptors (2008.09870v4)

Published 22 Aug 2020 in cs.RO and cs.CG

Abstract: Indirect methods for visual SLAM are gaining popularity due to their robustness to environmental variations. ORB-SLAM2 \cite{orbslam2} is a benchmark method in this domain, however, it consumes significant time for computing descriptors that never get reused unless a frame is selected as a keyframe. To overcome these problems, we present FastORB-SLAM which is lightweight and efficient as it tracks keypoints between adjacent frames without computing descriptors. To achieve this, a two-stage coarse-to-fine descriptor independent keypoint matching method is proposed based on sparse optical flow. In the first stage, we predict initial keypoint correspondences via a simple but effective motion model and then robustly establish the correspondences via pyramid-based sparse optical flow tracking. In the second stage, we leverage the constraints of the motion smoothness and epipolar geometry to refine the correspondences. In particular, our method computes descriptors only for keyframes. We test FastORB-SLAM on \textit{TUM} and \textit{ICL-NUIM} RGB-D datasets and compare its accuracy and efficiency to nine existing RGB-D SLAM methods. Qualitative and quantitative results show that our method achieves state-of-the-art accuracy and is about twice as fast as the ORB-SLAM2.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.