Symmetry-resolved entanglement in symmetry-protected topological phases
Abstract: Symmetry protected topological phases (SPTs) have universal degeneracies in the entanglement spectrum in one dimension (1D). Here, we formulate this phenomenon in the framework of symmetry-resolved entanglement (SRE) using cohomology theory. We develop a general approach to compute entanglement measures of SPTs in any dimension and specifically SRE via a discrete path integral on multi-sheet Riemann surfaces with generalized defects. The resulting path integral is expressed in terms of group cocycles describing the topological actions of SPTs. Their cohomology classification allows to identify universal entanglement properties. Specifically, we demonstrate an equi-block decomposition of the reduced density matrix into symmetry sectors, for all 1D topological phases protected by finite Abelian unitary symmetries.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.