Papers
Topics
Authors
Recent
2000 character limit reached

$2$-Layer $k$-Planar Graphs: Density, Crossing Lemma, Relationships, and Pathwidth

Published 21 Aug 2020 in cs.DM, cs.CG, and cs.DS | (2008.09329v1)

Abstract: The $2$-layer drawing model is a well-established paradigm to visualize bipartite graphs. Several beyond-planar graph classes have been studied under this model. Surprisingly, however, the fundamental class of $k$-planar graphs has been considered only for $k=1$ in this context. We provide several contributions that address this gap in the literature. First, we show tight density bounds for the classes of $2$-layer $k$-planar graphs with $k\in{2,3,4,5}$. Based on these results, we provide a Crossing Lemma for $2$-layer $k$-planar graphs, which then implies a general density bound for $2$-layer $k$-planar graphs. We prove this bound to be almost optimal with a corresponding lower bound construction. Finally, we study relationships between $k$-planarity and $h$-quasiplanarity in the $2$-layer model and show that $2$-layer $k$-planar graphs have pathwidth at most $k+1$.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.