Hybrid quantum-classical algorithms for solving quantum chemistry in Hamiltonian-wavefunction space
Abstract: Variational quantum eigensolver~(VQE) typically optimizes variational parameters in a quantum circuit to prepare eigenstates for a quantum system. Its applications to many problems may involve a group of Hamiltonians, e.g., Hamiltonian of a molecule is a function of nuclear configurations. In this paper, we incorporate derivatives of Hamiltonian into VQE and develop some hybrid quantum-classical algorithms, which explores both Hamiltonian and wavefunction spaces for optimization. Aiming for solving quantum chemistry problems more efficiently, we first propose mutual gradient descent algorithm for geometry optimization by updating parameters of Hamiltonian and wavefunction alternatively, which shows a rapid convergence towards equilibrium structures of molecules. We then establish differential equations that governs how optimized variational parameters of wavefunction change with intrinsic parameters of the Hamiltonian, which can speed up calculation of energy potential surface. Our studies suggest a direction of hybrid quantum-classical algorithm for solving quantum systems more efficiently by considering spaces of both Hamiltonian and wavefunction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.