Papers
Topics
Authors
Recent
2000 character limit reached

On Turn-Regular Orthogonal Representations

Published 20 Aug 2020 in cs.CG | (2008.09002v1)

Abstract: An interesting class of orthogonal representations consists of the so-called turn-regular ones, i.e., those that do not contain any pair of reflex corners that "point to each other" inside a face. For such a representation H it is possible to compute in linear time a minimum-area drawing, i.e., a drawing of minimum area over all possible assignments of vertex and bend coordinates of H. In contrast, finding a minimum-area drawing of H is NP-hard if H is non-turn-regular. This scenario naturally motivates the study of which graphs admit turn-regular orthogonal representations. In this paper we identify notable classes of biconnected planar graphs that always admit such representations, which can be computed in linear time. We also describe a linear-time testing algorithm for trees and provide a polynomial-time algorithm that tests whether a biconnected plane graph with "small" faces has a turn-regular orthogonal representation without bends.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.