Maximum Geometric Quantum Entropy (2008.08679v3)
Abstract: Any given density matrix can be represented as an infinite number of ensembles of pure states. This leads to the natural question of how to uniquely select one out of the many, apparently equally suitable, possibilities. Following Jaynes' information-theoretic perspective, this can be framed as an inference problem. We propose the Maximum Geometric Quantum Entropy Principle to exploit the notions of Quantum Information Dimension and Geometric Quantum Entropy. These allow us to quantify the entropy of fully arbitrary ensembles and select the one that maximizes it. After formulating the principle mathematically, we give the analytical solution to the maximization problem in a number of cases and discuss the physical mechanism behind the emergence of such maximum entropy ensembles.
- Statistical Mechanics. Elsevier B.V., 2011.
- Thermodynamics and Statistical Mechanics. Springer New York, New York, NY, 1995.
- E. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106(4), 1957.
- E. T. Jaynes. Information Theory and Statistical Mechanics. II. Phys. Rev., 108:171–190, 1957.
- Elements of Information theory. Wiley-Interscience, New York, 2006.
- F. Anza and J. P. Crutchfield. Beyond density matrices: Geometric quantum states. Phys. Rev. A, 2020.
- F. Anza and J. P. Crutchfield. Geometric quantum thermodynamics. Phys. Rev. E, 2022.
- F. Strocchi. Complex Coordinates and Quantum Mechanics. Rev. Mod. Physics, 38(1):36–40, 1966.
- T. W. B. Kibble. Geometrization of quantum mechanics. Comm. Math. Physics, 65(2):189–201, 1979.
- A. Heslot. Quantum mechanics as a classical theory. Phys. Rev. D, 31(6):1341–1348, 1985.
- G. W. Gibbons. Typical states and density matrices. J. Geom. Physics, 8(1-4):147–162, 1992.
- A. Ashtekar and T. A. Schilling. Geometry of quantum mechanics. In AIP Conference Proceedings, volume 342, pages 471–478. AIP, 1995.
- A. Ashtekar and T. A. Schilling. Geometrical formulation of quantum mechanics. In On Einstein’s Path, pages 23–65. Springer New York, New York, NY, 1999.
- Geometric quantum mechanics. J. Geom. Physics, 38(1):19–53, 2001.
- I. Bengtsson and K. Zyczkowski. Geometry of Quantum States. Cambridge University Press, Cambridge, 2017.
- Geometrization of quantum mechanics. Theoret. Math. Physics, 152(1):894–903, 2007.
- D. Chruściński. Geometric aspects of quantum mechanics and quantum entanglement. J. Physics Conf. Series, 30:9–16, 2006.
- G Marmo and G F Volkert. Geometrical description of quantum mechanics—transformations and dynamics. Physica Scripta, 82(3):038117, 2010.
- J. Avron and O. Kenneth. An elementary introduction to the geometry of quantum states with pictures. Rev. Math. Physics, 32(02):2030001, 2020.
- D. Pastorello. A geometric Hamiltonian description of composite quantum systems and quantum entanglement. Intl. J. Geom. Meth. Mod. Physics, 12(07):1550069, 2015.
- D. Pastorello. Geometric Hamiltonian formulation of quantum mechanics in complex projective spaces. Intl. J. Geom. Meth. Mod. Physics, 12(08):1560015, 2015.
- D. Pastorello. Geometric Hamiltonian quantum mechanics and applications. International Journal of Geometric Methods in Modern Physics, 13(Supp. 1):1630017, 2016.
- J. Clemente-Gallardo and G. Marmo. The Ehrenfest picture and the geometry of quantum mechanics. Il Nuovo Cimento C, 3:35–52, 2013.
- A complete classification of quantum ensembles having a given density matrix. Physics Letters A, 183(1):14–18, 1993.
- J. Vaccaro H. Wiseman. Inequivalence of pure state ensembles for open quantum systems: the preferred ensembles are those that are physically realizable. Phys. Rev. Lett., 2001.
- On the distribution of the wave function for systems in thermal equilibrium. Journal of Statistical Physics, 2006.
- Information content for quantum states. J. Math. Physics, 41(5):2586–2592, 2000.
- How many bits does it take to track an open quantum system? Phys. Rev. Lett., 106:020406, Jan 2011.
- Schroedinger. The exhcange of energy in wave mechanics. Annalen der Physik, 1927.
- Erwin Schrödinger. Statistical thermodynamics. Dover Publications, 1989.
- Walecka. Fundamentals of Statistical Mechanics. Manuscript and notes by Felix Bloch. Stanford University Press, 1989.
- Universal probability distribution for the wave function of a quantum system entangled with its environment. Communications in Mathematical Physics, 342(3):965–988, March 2016.
- Peter Reimann. Typicality of pure states randomly sampled according to the gaussian adjusted projected measure. Journal of Statistical Physics, 132(5):921–935, September 2008.
- F. Anza and J. P. Crutchfield. Quantum information dimension and geometric entropy. Phys. Rev. X Quatum, 2022.
- D. Pollard. A user’s guide to measure theoretic probability. Cambridge University Press, 2002.
- A. Kolmogorov. Foundations of the theory of probability. Chelsea Publishing Company, 1933.
- Vourdas. Quantum systems with finite hilbert spaces. Rep. Prog. Phys., 67, 2004.
- Bengtsson. Three ways to look at mutually unbiased bases. AIP Conf. Proc., 889, 2007.
- Zeilinger Lawrence, Brukner. Mutually unbiased binary observable sets on n qubits. Phys. Rev. A, 65:032320, Feb 2002.
- The continuous categorical: a novel simplex-valued exponential family. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 3637–3647. PMLR, 2020.
- Eigenstate Thermalization for Degenerate Observables. Physical Review Letters, 120(15):150603, apr 2018.
- J. v. Neumann. Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik. Zeitschrift für Physik, 57(1):30–70, January 1929.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.