Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Statistical ensembles without typicality (1707.08218v1)

Published 25 Jul 2017 in quant-ph and cond-mat.stat-mech

Abstract: Maximum-entropy ensembles are key primitives in statistical mechanics from which thermodynamic properties can be derived. Over the decades, several approaches have been put forward in order to justify from minimal assumptions the use of these ensembles in statistical descriptions. However, there is still no full consensus on the precise reasoning justifying the use of such ensembles. In this work, we provide a new approach to derive maximum-entropy ensembles taking a strictly operational perspective. We investigate the set of possible transitions that a system can undergo together with an environment, when one only has partial information about both the system and its environment. The set of all these allowed transitions encodes thermodynamic laws and limitations on thermodynamic tasks as particular cases. Our main result is that the set of allowed transitions coincides with the one possible if both system and environment were assigned the maximum entropy state compatible with the partial information. This justifies the overwhelming success of such ensembles and provides a derivation without relying on considerations of typicality or information-theoretic measures.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube