Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Product Search for Matching Structured Product Catalogs in E-Commerce

Published 18 Aug 2020 in cs.IR | (2008.08180v1)

Abstract: Retrieving all semantically relevant products from the product catalog is an important problem in E-commerce. Compared to web documents, product catalogs are more structured and sparse due to multi-instance fields that encode heterogeneous aspects of products (e.g. brand name and product dimensions). In this paper, we propose a new semantic product search algorithm that learns to represent and aggregate multi-instance fields into a document representation using state of the art transformers as encoders. Our experiments investigate two aspects of the proposed approach: (1) effectiveness of field representations and structured matching; (2) effectiveness of adding lexical features to semantic search. After training our models using user click logs from a well-known E-commerce platform, we show that our results provide useful insights for improving product search. Lastly, we present a detailed error analysis to show which types of queries benefited the most by fielded representations and structured matching.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.