Papers
Topics
Authors
Recent
Search
2000 character limit reached

When Hardness of Approximation Meets Hardness of Learning

Published 18 Aug 2020 in cs.LG and stat.ML | (2008.08059v2)

Abstract: A supervised learning algorithm has access to a distribution of labeled examples, and needs to return a function (hypothesis) that correctly labels the examples. The hypothesis of the learner is taken from some fixed class of functions (e.g., linear classifiers, neural networks etc.). A failure of the learning algorithm can occur due to two possible reasons: wrong choice of hypothesis class (hardness of approximation), or failure to find the best function within the hypothesis class (hardness of learning). Although both approximation and learnability are important for the success of the algorithm, they are typically studied separately. In this work, we show a single hardness property that implies both hardness of approximation using linear classes and shallow networks, and hardness of learning using correlation queries and gradient-descent. This allows us to obtain new results on hardness of approximation and learnability of parity functions, DNF formulas and $AC0$ circuits.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.