Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Improving Throughput of Multichannel ALOHA using Preamble-based Exploration (2008.07333v1)

Published 13 Aug 2020 in cs.IT and math.IT

Abstract: Machine-type communication (MTC) has been extensively studied to provide connectivity for devices and sensors in the Internet-of-Thing (IoT). Thanks to the sparse activity, random access, e.g., ALOHA, is employed for MTC to lower signaling overhead. In this paper, we propose to adopt exploration for multichannel ALOHA by transmitting preambles before transmitting data packets in MTC, and show that the maximum throughput can be improved by a factor of 2 - exp(-1) = 1.632, In the proposed approach, a base station (BS) needs to send the feedback information to active users to inform the numbers of transmitted preambles in multiple channels, which can be reliably estimated as in compressive random access. A steady-state analysis is also performed with fast retrial, which shows that the probability of packet collision becomes lower and, as a result, the delay outage probability is greatly reduced for a lightly loaded system. Simulation results also confirm the results from analysis.

Citations (7)

Summary

We haven't generated a summary for this paper yet.