Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Improved Dilated Convolutional Network for Herd Counting in Crowded Scenes (2008.07254v1)

Published 17 Aug 2020 in cs.CV

Abstract: Crowd management technologies that leverage computer vision are widespread in contemporary times. There exists many security-related applications of these methods, including, but not limited to: following the flow of an array of people and monitoring large gatherings. In this paper, we propose an accurate monitoring system composed of two concatenated convolutional deep learning architectures. The first part called Front-end, is responsible for converting bi-dimensional signals and delivering high-level features. The second part, called the Back-end, is a dilated Convolutional Neural Network (CNN) used to replace pooling layers. It is responsible for enlarging the receptive field of the whole network and converting the descriptors provided by the first network to a saliency map that will be utilized to estimate the number of people in highly congested images. We also propose to utilize a genetic algorithm in order to find an optimized dilation rate configuration in the back-end. The proposed model is shown to converge 30\% faster than state-of-the-art approaches. It is also shown that it achieves 20\% lower Mean Absolute Error (MAE) when applied to the Shanghai data~set.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.