Papers
Topics
Authors
Recent
2000 character limit reached

Chrome Dino Run using Reinforcement Learning (2008.06799v1)

Published 15 Aug 2020 in cs.AI and cs.LG

Abstract: Reinforcement Learning is one of the most advanced set of algorithms known to mankind which can compete in games and perform at par or even better than humans. In this paper we study most popular model free reinforcement learning algorithms along with convolutional neural network to train the agent for playing the game of Chrome Dino Run. We have used two of the popular temporal difference approaches namely Deep Q-Learning, and Expected SARSA and also implemented Double DQN model to train the agent and finally compare the scores with respect to the episodes and convergence of algorithms with respect to timesteps.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.