Genus expansion of matrix models and $\hbar$ expansion of KP hierarchy (2008.06416v2)
Abstract: We study $\hbar$ expansion of the KP hierarchy following Takasaki-Takebe arXiv:hep-th/9405096 considering several examples of matrix model $\tau$-functions with natural genus expansion. Among the examples there are solutions of KP equations of special interest, such as generating function for simple Hurwitz numbers, Hermitian matrix model, Kontsevich model and Brezin-Gross-Witten model. We show that all these models with parameter $\hbar$ are $\tau$-functions of the $\hbar$-KP hierarchy and the expansion in $\hbar$ for the $\hbar$-KP coincides with the genus expansion for these models. Furthermore, we show a connection of papers considering the $\hbar$-formulation of the KP hierarchy arXiv:1509.04472, arXiv:1512.07172 with original Takasaki-Takebe approach. We find that in this approach the recovery of enumerative geometric meaning of $\tau$-functions is straightforward and algorithmic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.